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The problem of a two-dimensional profile sliding over the undulating surface 
of a perfect incompressible heavy fluid of infinite depth is solved numerically 
with the use of Sedov’s theory [ J., 2 ] _ Forces acting on the profile and the 
shape of the fluid free surface are determined. 

According to Sedov high speeds of motion correspond to waves of considerable 
length. Hence, when the profile slightly leads the waves specified ahead of it, the sol- 
ution for any position of the profile on the wave contour does not greatly differ from the 
stationary solution, The two-dimensional problem of gliding over the surface of a fluid 

at rest was numerically solved in [3] by Sedov’s method. The finding related to hydro- 
dynamic forces at the profile obtained in [3 ] are in agreement with data in [4 1. De - 
term~ation of the spray filament at the leading edge makes it possible to obtain by the 
considered method a more exact solution. 

1. Let us consider a slightly curved two-dimensional profile gliding over the 
surface of a perfect incompressible heavy fluid of infinite depth and density p, whose 
horizontal translational velocity c is constant. We shall use a system of coordinates 

attached to the profile, as shown in Fig, 1, and denote the profile projection on the 
fluid equilibrium level by 2 a. The profile angle of inclination to the OX - axis at any 

of its points is assumed small. Motion of the fluid relative to the profile is assumed to 
be steady and potential. As the characteristic parameters of the problem we select the vel- 

ocity c and the linear dimension n , and introduce dimensionless variables by formulas 

5’ = ~5, Y’ = uY, V’ = cu, q’ = acrp, v’ = [ grad cp’ 1 

where 9 is the velocity potential of the fluid absolute motion and v is the absolute 
velocity of motion, The problem reduces to the determination of the characteristic flow 

function w (z) = g, (Z y) f i+ (r, y), where z = z + iy, that satisfies the 

following conditions. 

1'. When Y( 0 the derivatives ~w~dz’ and dw i dz outside the neigh- 

borhood of p$nis z = +1 are bounded and tend to zero when Y - - 00 , and the 
derivative dw / dz at point z = - 1 and function w at point z = 1 are contin- 

uous. 

2O. Ahead of the profile, at I -+ + co steady waves of the form 

w (z) = (A, + iAz)e-iYz + conrt, v = gale’ 

may exist. In these formulas g is the free-fall acceleration, and A, and A, are 
fairly small arbitrary constants. We shall consider such waves as independent of the pro- 
file motion, In the case of motion over the surface of fluid at rest: Ai = A, = 0. 

3’. When Y = 0 and 13 I< 1 , the condition of flow around the profileis 

dq f 8Y = - B (J) 
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46, At the free boundary y = 0 and 1 z 1 > 1 the condition of constant 
pressure is 

acpiax - VY = 0 

Using Sedov’s method we can express the general solution of the problem as 

f(z) = i jl a, (z - l/3 - l),, 
(1.2) 

where the coefficient ya represents the circulation around an equivalent wing sub - 
stituted for the gliding profile and selected on the basis of the 

Fig. 1 
J oukosky -Chaplygin condition. We have to determine in the course of solution the 
real coefficients u,~ that satisfy the linear system of algebraic equations 

cc 

(2/c + 1) Qkt1 + $ C[ 1 1 
%+I + (1.3 ) 

i=o 
4(i+~+1)~~-1~44(i_-)~_1 I 

m 

2ka2k + G CT 1 1 - 
_4(;+/c)~-l - 4 (i __ k)’ _ t J ezj + 6; = 0 

j=1 

k=l,2,3, . . 

Coefficients brkkfl and &K* of this system linearly depend on parameters V, 0, 

~2, ‘PI, and %, where ‘pl + iv1 = w (+I). 

2. Let us consider thesimplest version of the problem, when p = con& and 
A,#0 and A2#0. 

The basic matrix of system (1.3 ) was obtained in [3 ] with four coefficients 
a, taken into account. The rapid decrease of coefficients a, with increasing n 

justifies the rejection of all subsequent terms of series (1.2). System (1.3 ) can be re - 
presented in the matrix form Ali = 6, where A = 11 aik 11 is the basic fourth order 
matrix whose elements are defined by formulas 
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a - 29 (P, 12 - - Pz) + 2~ (Qo - QA - JW 
u~,=-3va(P,+P,)-33Y(Qo-tQ3)+~~Y--~ 

al4 = 4v2 (P,, - P4) + 4v (Q, - Q4) - 2nv 
16 v 

a21 = - 3 ~ + + v= (PO + Pl), 
256 v -- a22 = 45n - @(PO - P,)+2 

I6 a23 = - 3 -y ’ t -& v2 (PO + P3), az4 = ‘g + - 2v*‘(Po - P4) 

8 v -- 
a31 = - 15 n , a32 = 0, a33=g++3, 0 a34 = 

32 v 512 v -- u4l = - 225 ~ 7 
96 v -- 

a42= -1575 q ’ a43 = - 225 7 

u44 =4g$+4 

E = (a,, a2, a3, d4) is the column of coefficients a,, which is to be determined 

and 6 = (b,, b,, b,, b4) is a column whose coefficients are determined by formulas 

b, = fJ + 5/e v2f3, b, = - II2 v2fJ, b, = Vs v2B, b4 = 0 

The basic matrix A remains unchanged when the independent wave is taken 
into account, and only its first two elements get additions in the right-hand side of sys- 

tem (1.3) b 
1* = b, + v (A, cos v + A, sin v) - v2 (A, cos v -AI sin v) 

bs* = 6% $ -$ (A, cos v - A, sin v) 

where b, and b, are coefficients of the solution in the case of absence of wave. 
Functions P, and Qn (n = 0, 1, 2, 3, 4) were determined in [3 ,4] for 

small V in the form of series in v . The specified accuracy makes it possible to con- 
sider in these series a limited number of terms. The selection of parameters A, and A., 
makes it possible to determine the independent wave amplitude A = J/A12 + A22 

and, also, the position of the profile on the wave form. The lift and moment coeffi - 

cients calculated for several Froude numbers in the case of A, = A2 when the profile 
is at the wave crest 

2Y J% CV=pcalB=-- 8M, al 
6 ’ mZ=pcZlZSn=B 

are shown in Fig. 2, where curves 1, 2 and 3 correspond to A / p equal 0.5, 0.714 
and 5.0 , respectively, while curve 4 represents Chaplygin’s calculations (A = 0). 
The difference between the first three curves and that calculated for A = Ois signifi - 
cant only at small Froude numbers. 

The formula for calculating the 5 -ordinates of the fluid free surface behind 
the profile in the case of free waves is of the form 

~=A1sinv~+A2cos~v~+~z~Pocosv(~+1)-QQosinv(~+1)] - 
4 

c 
na,IP,cosv(C+~)- Qnsinv(E+ I)1 + 



1006 M. N. Nikolaev 

1 

’ V 
\ 

arcsin t cos v (E -+ t) dt - 

21 
3 .br 

cos v (1 + EJ - 
n:.z1 

cos (nn ~-- v --+ YE) -I- v { sin (vt -1 YE + narcsin 1/l - t”) dt + 
-1 

I 

yz iill+~ 

L 4 
vt sin 2’ (4 - t) - cos v (4 - t) dt 

I 

_ 
t2 

1 
4 

(- I)+1 ig - p=q’” + (- 1)“cosv (E - 1) + 

(--l)‘Lvi (t - T/t2j1)“Pinv(g - t) (It] 

1 

where x= - 6 . Examples of the wave trough form cal- 
culated behind the profile are shown in Fig. 3, 
where the solid and the dash lines relate, res- 
pectively, to AIf3=0.5 and A I /3 = 5.0 
with /3 = 0.02 , and are given for several 

Froude numbers. As in the case of A = 0, 
the plate trailing edge is always above the 
deepest spot of the trough and below the high- 
est spot of the subsequent rise of fluid in the 
trough. The fluid surface form is that of a 
2 n/v -long sine wave at virtually one wave 

length behind the profile. Height of that wave 

is determined directly. For a quantitative de- 
termination of the form of the fluid free sur- 
face it is convenient to use its horizontal and 

I 2 3 Fr vertical dimensions denoted, respectively, by 

Fig. 2 xhv J!J and XH , and by h and H (see 

Fig. 1). In the considered example an in - 

crease of A results in the shift of maximum trough depth away from the profile. In 
the beginning this decreases the trough depth. However a further increase of parameter 

A shows that the closer the independent wave trough is to the deepest point of the gen- 
erated trough, the deeper is the latter. Such resonance of the independent wave and of 

the trough is clearly seen when A / p = 5.0 where the trough is even deeper than 

for A = 0. It should be noted that for an excessively high wave the results obtained 
by the theory used here become less accurate. The calculation results vary periodically 

depending on the relative position of the profile over the wave. All other possible posi - 
tions of the profile relative to the independent wave are considered below on a somewhat 
different basis. If the wave is assumed fairly long in comparison with the profile wetted 

length, it is possible to consider a certain lead of the profile over the form of that wave, 
and determine all possible positions of the profile over it. 
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Fig. 3 

3. Small v correspond to long waves. For example, when v < 0.5, which 
corresponds to the Froude number Fr = (&7)--‘/z (relative to l = 2~) , the relative 
wave length is h > 12.5. Since we use the linear theory, it is possible to represent 
the motion of the profile over a long wave with a small lead over the latter as a sequ - 
ence of a number of its positions relative to the wave in the stationary problem. Let us 

consider such quasi-stationary motion on the example of a wave specified amplitude. 
The general solution with allowance for independent waves yields for the form 

of the free fluid surface at considerable distance ahead of the profile an equation of the 
form 

IJI (5, 0) = - A, sin v 2 + A, Cos v2 (3.1) 

The lead of the profile over independent waves can be defined with the use of 
some supplementary parameter p , and (3.1) can be represented as follows : 

+* (x, 0) = - A,* sin vz -+ A,* cos vx 

A,” = A, cos p - A, sin p, A,* = A, sin p f A2 ~0s p 

We may assume that p = Vt / a, where v is the lead velocity and t is 
the time. The solution for any arbitrary position of the profile over a wave of specified 
amplitude is then determined by solving the stationary problem for various A,* and 

A,* , for which it is sufficient to take p from the interval (0,x n). Examples of 

calculations of the free surface form that correspond to the deepest and shallowest wave 

trough behind the profile (see Fig. 4). The trough depth can vary by 2 A / fi. The 
smallest depth obtains when p = 0.71,) r and tne greatest for /A = 1.715. 

This result has a reasonably sound physical basis. Thus, when CL = 0.715 at 
point z = -1. which determines the trailing edge of the profile, the function that 

defines the wave form is zero and its derivative is positive. Thus the rise in the inde - 
pendent wave in the trailing edge region in this case tends to reduce the trough depth. 
The lengthwise characteristics of the fluid free surface remain unchanged. The curves 
in Fig. 5 show that the forces and the moment at the profile vary periodically. 
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The curves in Figs. 4 and 5 have been cal- 
culated for A / 8 = 0.143 (the solid 
and dash lines relate, respectively, to 

y / p = 4.57 and v i 8 = 7.15, 
with fi 5 0.07). 

Fig. 4 Fig. 5 

4, The theory on which these calculations are based does not yield a correct 
solution in the neighborhood of the leading edge. This is the consequence of the known 

assumption that the fluid velocity in that neighborhood is low, The presence of a spray 

filament, similar to the infinite velocity at the leading edge of a thin wing, is charact- 

eristic of that neighborhood. The method used below makes it possible to determine the 
spray filament thickness and the exact boundary of the free surface at infinite distance 
ahead of the profile, and also to define more accurately that filament in the region of 

its base, The theory similar to that of the theory of wing and the theory of filaments 
for a weightless fluid yield the same results, except in the small neighborh~d - fig 

of the leading edge. such filament was determined in f5 1 in the case of weightless 
fluid, where it was shown that the solution of the filament problem in the region of the 

stagnation point is of the form WC = 4&p% I 5E I while the solution by the method 

considered here is in that region of the form wa = iddi, whered=const,The condition 
of smooth Madison of the main stream to the region of the spray filament at distance 

- fiz from the stagnation point yields for the filament thickness the formula 

6 = ndW6cs (4.X) 

The filament is readily determined by the introduction of the so-called wetted length i 
(see Fig. 1) on which virtually the total pressure is concentrated. For small angles of 

travel the formula 2 = 46 I (RB”) is valid. ‘This yields the known relatio~ip for a 
weightless fluid: 6, = n~V2, where 6, = 6/&z. As shown by Sedov, for a pond- 
erable fluid the analogy between gliding and the motion of a wing holds, except in the 

neighborhood of the leading edge. Assuming that a formula of the form (4, li is also 
valid for a ponderable fluid, we have 6, = nd2, / 4 and for the determination of 

the constant d, dlu 
-=$+V_&” -Cvw- 
dZ 

[2 (z - I)]-“G 2 a,n [(- 1)” - 1. I 
7%=1 
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From the last formula d, = - v/z (a, + %a) and for the filament thickness in the 
stated approximation we have 6, = l/a n (u,+~u,)~. When Y -+ 0, a, -.+ p and 

a, --t 0 (n = 2,3,4). Thi s result makes possible a more exact definition of flow in 
the leading edge region. According to the exact theory the streamlines that determine 
the ordinates of the fluid free surface behind and ahead of the profile differ by the fil- 

ament thickness. The free boundary of fluid behind the profile is determined in thecase 

of the equivalent wing, and in that of the gliding plate by the streamline which reaches 

the stagnation point. Since the wing chord 1 = 2u, hence for 6, = 0 the boundary 

of the fluid free surface ahead of tne profile is defined by curve BD (see Fig. 1). As 

noted in 13 I, that curve in the vicinity of the leading edge is nearly vertical. The latter 
follows from the assumption that the leading edge can be reached by moving continu - 

ously over the free surface ahead of the profile, which in reality is not so. 
In concluding we note that the analysis presented here completes the numerical 

investigation of the two-dimensional problem which was started in [4] and [3] and was 
based on its aerodynamic analogy. Results obtained here are valid for a rectilinear pro- 

file. It is established that the effect of regular perturbations of fluid at considerable 
distance ahead of the profile on the forces acting on it is significant only at moderate 

and low Froude numbers. At considerable Froude numbers the problem, as formulated 
here, involves a long wave for which the obtained results are valid with known accuracy 
also in the case of a small lead of the profile over waves specified ahead of it. The for- 

ces and moments acting at the profile are periodic of period 2 nc / (vv). Ordinates of 
the fluid free surface are determined by simple superposition. The maximum height of 
the initial wave rise from the trough over the depth of the wave trough behind the pro - 
file is equal to the height of the oncoming wave. The longitudinal pattern of the boun- 

dary of the fluid free surface remains unchanged. To improve the accuracy of solution 

derived by the described theory in the leading edge region it was assumed that it is ana- 
lytic in that region and similar to that obtained in the theory of weightless fluid. The 

joining of the two solutions at the filament base makes it possible to take into account 
the filament ponderability, and improve the accuracy of results obtained by the con - 

sidered theory. Passing to limit at considerable Froude numbers yields for the filament 

thickness the same result as in the case of weightless fluid. 
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